Feature-Weighted Linear Stacking
نویسندگان
چکیده
Ensemble methods, such as stacking, are designed to boost predictive accuracy by blending the predictions of multiple machine learning models. Recent work has shown that the use of meta-features, additional inputs describing each example in a dataset, can boost the performance of ensemble methods, but the greatest reported gains have come from nonlinear procedures requiring significant tuning and training time. Here, we present a linear technique, Feature-Weighted Linear Stacking (FWLS), that incorporates meta-features for improved accuracy while retaining the well-known virtues of linear regression regarding speed, stability, and interpretability. FWLS combines model predictions linearly using coefficients that are themselves linear functions of meta-features. This technique was a key facet of the solution of the second place team in the recently concluded Netflix Prize competition. Significant increases in accuracy over standard linear stacking are demonstrated on the Netflix Prize collaborative filtering dataset.
منابع مشابه
Short Note Phase-Weighted Stacking Applied to Low-Frequency Earthquakes
We apply phase-weighted stacking (PWS) to the analysis of lowfrequency earthquakes (LFEs) in the Parkfield, California, region and central Cascadia. The technique uses the coherence of the instantaneous phase among the stacked signals to enhance the signal-to-noise ratio (SNR) of the stack. We find that for picking LFE arrivals for the Parkfield, California, region and for LFE template formatio...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملFace View Synthesis Across Large Angles
Pose variations, especially large out-of-plane rotations, make face recognition a difficult problem. In this paper, we propose an algorithm that uses a single input image to accurately synthesize an image of the person in a different pose. We represent the two poses by stacking their information (pixels or feature locations) in a combined feature space. A given test vector will consist of a kno...
متن کاملMax-Margin Stacking and Sparse Regularization for Linear Classifier Combination and Selection
The main principle of stacked generalization (or Stacking) is using a second-level generalizer to combine the outputs of base classifiers in an ensemble. In this paper, we investigate different combination types under the stacking framework; namely weighted sum (WS), class-dependent weighted sum (CWS) and linear stacked generalization (LSG). For learning the weights, we propose using regularize...
متن کاملA Fusion of Stacking with Dynamic Integration
In this paper we present a novel method that fuses the ensemble meta-techniques of Stacking and Dynamic Integration (DI) for regression problems, without adding any major computational overhead. The intention of the technique is to benefit from the varying performance of Stacking and DI for different data sets, in order to provide a more robust technique. We detail an empirical analysis of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/0911.0460 شماره
صفحات -
تاریخ انتشار 2009